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OCCURRENCE OF THERMOCAPILLARY CONVECTION IN A CYLINDRICAL LAYER 

WITH DIFFERENT METHODS OF HEATING 

E. A. Ryabitskii UDC 532.516:536.24.01 

In the absence of body forces, perturbations of the equilibrium state of a nonuniformly 
heated fluid are governed by the intensity of the thermocapillary forces which arise as a 
result of the temperature dependence of surface tension. If the equilibrium temperature 
gradient is large enough, then a change in surface tension will lead to loss of stability of 
the equilibrium state -the occurrence of thermocapillary convection. 

The studies [1-3] examined the conditions for the onset of convection in a fluid during 
heating of the solid or free boundary without allowance for the deformation of the free sur- 
face. Andreev et al. [4] studied the stability of the equilibrium of a fluid cylinder and 
cylindrical and plane layers heated by internal sources. The free surface was assumed to 
have been deformable in these cases. It was shown that allowance for the deformation of the 
boundary introduces a new factor which influences the stability of the equilibrium state~ 
In this case, there is not only a decrease in stability, but there is a qualitative change in 
the neutral curve. 

In the present investigation, we study the stability of a cylindrical layer with a de- 
formable free surface in the case when the solid cylinder is also heated by internal sources. 
Formulas are obtained for the critical Marangoni numbers. It is shown that, as in [4], al- 
lowance for the deformation of the free boundary leads to discontinuities on the neutral 
curve. In the case of the heating of the solid surface, the curve of critical Marangoni 
numbers may have two points of discontinuity. Whether it does or not depends on the Weber 
number. Also, with heating by internal heat sources for azimuthal perturbations (m = !), 
allowance for deformation of the free surface leads to an increase in stability. 

i. We will examine a cylindrical layer of a viscous heat-conducting fluid bounded by 
a solid internal surface and free external surface. Gravitational forces are absent. We 
introduce a cylindrical coordinate system with the z axis directed along the generatrix of 
the cylinder. The equations of the solid and free boundaries r = r 0 and r = rl, respective- 
ly. The change in surface tension as a function of temperature is described by the formula 

o = o0 - • - @0). 

Let the fluid contain permanent internal heat sources of intensity q, and let a con- 
stant temperature @ l be assigned for the solid boundary. Then the equilibrium state is 
written as 

u ~-  v ~ w - - - - O , p  = c o n s t ,  

q [ 2 2 2 ln(r/rl) ] ] n ( r / r ~ )  
o ( ~ ) = - ~  ~ ~+ (~-~o) ~(~o/~) +% ~n(~o/~)' (1.l) 

where u, v, and w are components of the velocity vector; p is pressure; @ is temperature. 

We choose the quantities rl, r12/v, v/rl, pv2/ri= , pv2/• as the characteristic scales 
of length, time, velocity, pressure, and temperature (v and X are kinematic viscosity and 
diffusivity and p is density). After conversion to dimensionless form, the expression for 
temperature has the form 
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00(~) = MaqPr-~[ i - -  $~ - -  (] - -  d~) In ~/ln d ] / 2  - -  M a P r - q n  $. ( 1 . 2 )  

H e r e ,  ~ = r / r z ;  d = r 0 / r z ;  P r  = v / •  i s  t h e  P r a n d t l  n u m b e r ;  Maq = q • 2 1 5  ~, Ma = O ~ •  

p v x l n ( r ~ / r 0 )  i s  t h e  M a r a n g o n i  n u m b e r .  

E q u a t i o n s  t o  d e s c r i b e  s m a l l  p e r t u r b a t i o n s  o f  a r b i t r a r y  t h e r m o c a p i l l a r y  m o t i o n  i n  c y l i n -  
d r i c a l  c o o r d i n a t e s  w e r e  o b t a i n e d  i n  [ 5 ] .  A s s u m i n g  t h a t  t h e s e  d i s t u r b a n c e s  a r e  i n d e p e n d e n t  
o f  T, ~ = z / r z , ~ a n d  x = v t / r ~  z i n  a c c o r d a n c e  w i t h  t h e  l aw e x p [ i ( m ~ +  a z )  - i a C x ] ,  we w r i t e  
t h e  a m p l i t u d e  e q u a t i o n s  f o r  t h e  e q u i l i b r i u m  s t a t e  ( 1 . 2 )  

+ = [ +  - -  

aV + - T  p = (~V)' 

a W  + l a P  = + ( ~ W ' ) ' ;  

2,;m - ~ - v ;  

2ira , 
+ - - ~ . - u ;  

($U)' + imV + ia~W = O; 

b T - -  PrO o = T ( ~ 1 ) ,  

d < ~ < t ,  a = o~ 2 + m2 /~  ~ - -  i a C ,  b = o; 2 -~  m21~ 2 - -  iaPrC;  

w h i l e  t h e  c o n d i t i o n s  on t h e  s o l i d  b o u n d a r y  ($ = d)  

U = V = W = T = O ,  

and the conditions on the free surface (~ = i) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

( l . 8 )  

r 

V '  - -  V + i m U  = - -  i m  ( T + OoR) ,  i a U  + W '  ~- 

+ oo ), 

- e +  2 u ' = W e  o ( l - o r  2 - m  ~ ) R - ( T  +0'oR ), T ' i B i T - [ -  

+ (o; + m o ; ) R  = o. 

(1.9) 

In (1.3)-(1.9), U, V, W, P, and T are perturbations of the components of the vector of 
velocity, pressure, and temperature; R is the deviation of the boundary along a normal from 
its undisturbed state r = rz; We 0 = rzo0/pv a is the Weber number; ~ is the wave number along 
the z axis; m is the spectral mode with respect to the angle ~; C = C r + iC i is a complex 
decrement; Bi = 8rz/X is the Biot number; X and 8 are thermal conductivity and interphase 

heat-transfer coefficient. 

We will henceforth examine only monotonic perturbations. In this case, the stability 
boundary is determined by the values C = 0 in (1.3)-(1.9). The conditions of existence of 
a nontrivial solution to the problem make it possible to find the critical Marangoni numbers 
at which the equilibrium state becomes unstable. 

2. We seek the solution of (1.3)-(1.9) in the form (U, V, W, P) = [T(1) + B0'(1)R]" 
(T($), ~(~), g(g), f($)). In this case, the problem for the functions ~, ~, g, and f is 
separate. Its solution was obtained [4]. We use (1.7) to find the function T and then, 
with allowance for (1.8)-(1.9) we obtain a relation linking the critical Marangoni numbers. 
We will present the final expressions for the three main cases. 

For axisymmetric perturbations (m = 0) 

Ma {uz ( i  - -  a 2) G o (a, ~ + A o (a, d) Pr -1  Weo  1 [11 - -  al~]} + 

+ Maq ( ~  (l - -  a ~) Goq (~, d) + A o (a,  d) Pr  -1  W e ?  1 X ( 2 . 1  ) 

• [a l  2 ( i  + (i - -  d~)/2 In ~ + I z (l  - -  ( t  - -  d~)/2 In d)]} = (i - -  a~) (Bi l~ - -  al2), 

where 

l~ = Io ( c zd ) Ko(oO- -  Io(oOKo(o:d) ,  l., = Io (ocd)K~(a  ) ~ I I ( c z ) K o ( a d ) ,  

Ao(cz,  d) = i - -  (z ~ + 2 a z C 3 [ I , ( a )  - alo(c0]  + 2a~C~[K,(or -~ aKo(~) ] ,  

26 



1 

G O (a, d) = 5 % ('c) [K o (aT) I o (ad) - -  I o (a'c) K o (czd)] d'c, 
d 

1 

Goq (a, d) = 5 (T) 4- (t  - -  d2)/2 In d) % ('Q [K o (a , )  I o (ad) - -  I o (a~) K o (ad)] d'~, 
d 

C 1 C2 
% (~) = ~ ~I o (a~) - -  - ~  ~K o (a~) + CaI ~ (a~) 4- C~K 1 (a~), 

C1 = (1 - -  V2K~(a))/Ii(cz),  Cz = [ - - Ia (ad)k l  - -  Io(ad)k= 4- [o(~Z)/a d~]/A,  

Ca ~ [ - -K2(ad)ka - -  K l (ad )k~  4- K I ( a ) / a ] / 2 a A ,  

C~ = [--I . , (ad)ka + Ii(~zd)k~ - -  I i ( a ) / a ] / 2 a A ,  

A = k~ + t la~d a - -  k2 [Ko (c~d) 11 (~z) 4- I o (ad) Ka (a)], 

k 1 = K l ( a d ) l , ( a ) - -  I~(ad)K~(a) ,  kz = K~(ad)Ii(~z ) 4- I~(~zd)K~(a), 

k3 = Io (a )Ko(ad  ) -  Ko(a)Io((zd),  k~ = Ko(oOI~(ad) 4- Io(a)K,(~zd).  

The integrals G O and G0q can be expressed explicitly through modified Bessel functions. 

These functions are omitted here due to their awkwardness. 

In the case of azimuthal perturbations (a = O) at m ~ 2 

Ma {(t - -  m 2) G (d) § A (d) Pr  -*  W e e  I [m (d  ~ 4- d - ~ )  - -  (d  '~ - -  d - ' ~ ) ]  } + 

~- Maq { ( 1  - -  m 2) Gq (d) - -  A (d) Pr  -1  W e 7  ~ [m  (d  m -4- d - '~ )  (1 4- (1 --d2)/21n d) + 

+ (d  "* - -  d - m )  (I - -  (i  - -  d2)/2 In d)] } = (1 - -  rn ~) [m (d  '~ 4- d - = )  - -  Bi (dm - -  d - m ) ] ,  

( 2 . 2 )  

where 

A ( d )  = 2 ( i  - - m  2)(C a + C6)-+ m z 4- i ,  

1 

c (d)  = - m]  
d 

I 

Gq (d) = S ('~ -t- ( i - -  d2)/2 In d) q) ('~) [ dm'~ - m  - -  d-m'~ "~] tiT, 
d 

m - - 1  , 
r = ( _ m C ~  "~+1 4- mC2~ -m*l  4- Ca~ - m - 1  4- C ~  7/2, 

C1 = [l - -  d -2"~ - -  m( l  - -  d -2) 1/25, C~ =- - - [ i  - -  d 2~ 4- m( i  - -  d -2)]/2A, 

Ca = m ( C ,  - -  0.5), C4 = --re(C2 - -  0,5), A = d ~ - -  d -2"~ - -  m(d  "~ - -  d-~). 

With a = 0 and m = i, the problem for azimuthal perturbations becomes degenerate and 
the solution takes the form U = V = P = O, T = C4(~ - d2/g), C~ = const - which corresponds 
to the displacement of a cylindrical layer as an integral whole. If we put We 0 = ~ in (1.9), 
then the solution of this problem is nontrivial and the Marangoni number is determined by 
Eq. (2.1). In this case, 

q~(~) = [--C1~ 2 4- (C2 - -  C~/2) 4- Ca~ -2 4- C~ In ~]/2, 

where 

C~ = 0.5 4- Ca, C2 = ( t  4- d2)/2 + Ca(d z 4- d-2), 

C~ = d 2 4- 2Ca(d 2 4- d-'~), 

Ca = ( i  - -  d ~ 4- 2d 2 in d)/[2(d ~ - -  d-~) - 4(d ~ 4- d -2) In d].  

In the general case (a # O, m # O) we have 
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](D = cdm((zD + C~Km(~D, q~(g) -- tc~L~(cz~) + 

§ C2gKm(a~) -F C3I,~+a(cz~) + C4Km+a((zg) + C~Im-t(~z~) + C6Km_~(~z~)]/2, 

'~(~) ~-- - - i [ C J m + ~ ( a ~ )  + C~Km+~(o~)-- C~Im_~(o~)-- C~Km-t(a~)]/2, 

t h e  c o n s t a n t s  Cz ,  . . . ,  Cs b e i n g  f o u n d  f r o m  t h e  b o u n d a r y  c o n d i t i o n s  ~ ( d ) . =  ~(d) = ~ ' ( d ) =  ~ ( l ) =  
0, ~'(i) + ~(i) + im = 0, C~Im'(~ ) + C2Km'(a ) + 2im~(l) = -(~2 + me). Let us now present 
the final expression 

Ma {(l - - a = - - m  2) Gm (a, d) -F Am (a, d)Pr -~ We~ ~ ( l ~ -  l~)] + 

+ Maq [(t  - -  c~ 2 - -  m ~) Gmq ((z, d) - -  Am (a, d) Pr  -1  We~ -1 [11 ( i  - -  

- -  (1 - -  d2)/2 In d) + 12 ( i  + (1 - -  d2)/2 in d)]} = (l  - -  a ~ - -  m 2) (12 - -  Bi l 0 ,  

(2.3) 

, t K t w h e r e  lx Im (r Km (a) --  Im (a) Km (o~d), 12=Im (a) Km (ad) --  re(a) Im (ad), 

1 

Gm (a, d) = S (P (r) [Kin (o:r) Im (o~d) --  Im (at) Km (~d)l dr ,  
d 

1 

Gmq (a,  d) = ~ (r ~ + (1 - -  d2)/2 In d) (~ (r) [Kin (~zr) Im (ad) --  
d 

- -  I ~  (at) Km (ad)I dr ,  Am (a, d) = - -  ] (1) + 2(p' (t) + t.  

Since the Weber and Prandtl numbers exist only as products in each of the relations derived 
here, we can reduce the number of determining parameters of the problem by introducing the 
modified Weber number We = We0Pr = rzo0/pv X. 

3. Let us examine the case 
with an ideally conducting solid 

Figure 1 shows the graph of 

Curves 1 and 2 correspond to the 
0, the critical Marangoni number 

Maq, = 381.8 at ~ = 2.86. Thus, 

The stability of the equilibrium 

Ma = 0, corresponding to heating by internal heat sources 
surface. 

Maq as a function of ~ plotted from (2.1) for d = 0.i. 

case of a nondeformable free boundary (We = ~). For Bi = 

Maq, = 185.7 (curve i) at ~ = 2. If Bi = 2 (curve 2), then 

at Bi = 0 there is no heat flow across the free boundary. 

state increases with an increase in heat transfer. The 
limiting case Bi + ~ corresponds to the transition to an isothermal free surface, and no 
loss of stability occurs here. The critical Marangoni number approaches unity in this case. 
If We # ~, then there exists a value of ~, [~, = 1.31 for Bi = 2, We = 103 (curve 3)] for 
which the denominator in (2.1) vanishes and the curve Maq(~) becomes discontinuous. The 

region of stability decomposes into two parts. At ~ < a~, it is located above curve 3. At 
> a,, it is bounded above by curve 3 and on the left by the straight line ~ = a,~. The 

left side of the neutral curve has the maximum Maq = 840 at a = 0, while the right side 

reaches the minimum value Maq, = 381.2 at ~ = 2.85. A decrease in We leads to a decrease in 

stability: the point of discontinuity ~, is shifted to the right and Maq, decreases. For 

all We ~ ~ Maq(1) = 0, and at ~ ~ ~ the curves Maq(a, We) asymptotically approach the curve 

for an infinite Weber number. An increase in d is accompanied by an increase in the stabil- 
ity reserve: for d = 0.3, Maq, = 790.4 at ~ = 3.68, while Maq, = 2014.9 at ~ = 5.] for d = 
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0.5. This change can be attributed to the stabilizing effect of viscous forces near the 

solid surface. 

Let us examine azimuthal perturbations. Figure 2 shows the dependence of Maq on ~ for 

d = 0.i and Bi = 0. For the undeformed free surface, curve 1 (m = i) has the minimum Maq, = 

155.3 at ~ = 1.21. Curve 2 (m = 2) takes the minimum value Maq, = 172 at ~ = 0 and then 

monotonically rises. Thus, for Bi = 0 and We = ~, perturbations with m = 1 are more dan- 

gerous than perturbations with m = 2. The curves Maq(~, We) lie above curve 1 for m = i, 

especially in the region of small ~. This is illustrated by curve 3, plotted for We = 105 . 

Meanwhile, the two curves nearly merge at ~ > 0.4. Thus, in the case of azimuthal perturba- 

tions (m = i), allowing for the deformation of the free boundary leads to an increase in 
stability. Since stability decreases with We for m = 2, for Bi = 0 there also exists a val- 

ue of We at which perturbations with m = 2 are more dangerous than perturbations with m = i. 
As can be seen from Fig. 2, curve 4 (m = 2, We = 102 ) has the minimum Maq, = 142.8 at ~ = 0 

and lies below curve i. If heat flows across the free surface (Bi # 0), then the mechanism 

by which the changeover to the most dangerous azimuthal modes occurs will be different. 
Figure 3 shows the graphs of Maq(~) for d = 0.i and Bi = 2. For We = ~, the minimum of 

curve 3 (m = 2) Maq, = 342 at ~ = i.ii lies below the minimum of curve 1 (m = i) Maq, = 

344.3 at ~ = 216. There exists a value of ~, (for Bi = 2, ~, = 1.77) such that at ~ > ~, 

curve 3 lies above curve i. Comparing curve 2, plotted for We = 105 , and curve i, we see 

that with allowance for the deformation of the free surface, the stability of the equilib- 
rium state relative to azimuthal disturbances m = 1 increases. For m = 2, stability decreases 

with a decrease in We. Thus, Maq, = 335.8 (curve 4, We = 103 , Bi = 2) at ~ = 1.06. The 

case of a nondeformable free boundary will also be the most stable for subsequent azimuthal 
modes. Here, a decrease in We will have very little effect on the behavior of the neutral 
curve. Moreover, the stability reserve is larger for these perturbations than for the first 

two azimuthal modes. For example, for d = 0.I, Bi = 2, and m = 3, Maq, = 415.9 at ~ = 0. 

The values of Maq, increase with an increase in m. 

Thus, perturbations with m = 1 will be the most dangerous at Bi = 0 for a nondeformable 
free surface. In the case when allowance is made for the deformation of the free boundary, 

there will also be a critical value of the Weber number We, such that perturbations with m = 
2 will become the most dangerous for We < We,. At Bi ~ 0, the increase in the wave numbers 

will become the deciding factor. At values of ~ less than a certain critical value ~,, the 
azimuthal mode m = 2 will be the most dangerous. At ~ > ~,, m = 1 will present the greatest 
danger. 

Comparison of our results with those obtained in [4] in the case of a thermally insulated 
solid cylinder showed that an equilibrium state with the temperature distribution (1.2) is 
more stable, since - in the case of ideal conduction - heat is removed from the solid sur- 
face. 

4. Let us examine the stability of the equilibrium state of a cylindrical layer of 

fluid heated laterally by an internal solid cylinder (Maq = 0). Figure 4 shows graphs of 

the critical Marangoni numbers as a function of the wave numbers constructed from (2.1) for 
Bi = 2 and d = 0.i. Curve i, corresponding to the case of a nondeformable surface, has the 
minimum Ma, = 114.5 at ~ = 2.4 (compare with Ma~ = 50.3 at ~ = 1.73 for Bi = 0). In the case 
We # ~, the denominator in (2.1) may vanish twice in relation to We. As is shown by curve 2, 
for We = 104 the points of discontinuity will be e, = 0.195 and 0.975. Here, the graph of 

Ma(~) decomposes into three parts. The first part lies below zero. The second has the min- 
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imum Ma = 391.8 at ~ = 0.87. The third, increasing monotonically, reaches the local maxi- 
mum Ma = 177 at ~ = 1.13 and then nearly merges with curve i. A decrease in We is accompa- 
nied by a rightward shift of the first discontinuity and a leftward shift of the second. In 
this case, there is a value of We, (We, = 1.5.103 at Bi = 2, d = 0.i) for which the discon- 
tinuities disappear. This is illustrated by curve 3, plotted for We = i02. For finite We, 
Ma(1) = 0, and at ~ + ~ the curves Ma(~, We) asymptotically approach the curve for We = ~. 

Let us proceed to the description of azimuthal perturbations. The characteristic be- 
havior of the neutral curves is shown in Fig. 5 for d = 0.i and Bi = 2. Curves i and 3 cor- 
respond to the case of a nondeformable free surface. Here, curve i (m = I) begins with 
Ma = 102 at ~ = 0 and has the minimum Ma = 88.2 at ~ = 1.41; for curve 3 (m = 2), the mini- 
mum value Ma, = 101.9 is reached at = = 0. Stability decreases when allowance is made for 
the deformation of the free boundary, especially in the region of small wave numbers. Thus, 
for m = i and We = 104 (curve 2), Ma, = 0 at ~ = 0. For m = 2, the effect of deformation 
of the surface is not as substantial. For example, for We = 103 (curve 4) the neutral curve 
again takes the minimum value at ~ = 0 (Ma, = 96.8). Thus, azimuthal perturbations with m = 
i are the most dangerous for the equilibrium state of a cylindrical fluid layer heated by 
an internal solid cylinder. 

The same problem was studied in [3]. Here, the free surface was assumed to have been 
nondeformable. The cumbersome nature of the formulas in [3] prevent us from comparing the 
results in general form. We therefore made a numerical comparison of the graphs of Ma(~) 
for axisymmetric perturbations. The calculations were performed with Bi = 0 and the results 
agreed quite well. 

We also compared the neutral curves Maq = 0 with the curves for Ma = 0 obtained in [4] 

in the case of a thermally insulated solid surface. The comparison showed that the equilib- 
rium state of a cylindrical fluid layer heated by internal sources is more stable than in 
the case of heating of the solid surface. The same result was observed for a plane layer in 

[4]. 

5. Let us examine the effect of internal heat sources on the stability of equilibrium 
with heating of the solid surface. Figure 6 presents graphs of the dependence of Ma on 
with d = 0.i, Bi = 2, and We = 104 . The graphs were plotted from (2.1) for Maq = i0 =, 103 , 

and 104 (curves 1-3). Here, as in the case Maq = 0, the denominator vanishes twice in rela- 

tion to We. Figure 6 also shows the dependence of Ma.~ = min Ma(a) on Maq at d = 0.i (curve 

4) and 0.3 (curve 6) for Bi = 2, We = ~. At Maq = 0, we obtain critical Marangoni numbers 

determining the boundary of stability in the absence of internal heat sources (Ma, = 114.5 
for d = 0.I and 190.7 for 0.3). The quantity Ma, vanishes at Maq = 380 for d = 0.i and at 

Maq = 790 for d = 0.3. For comparison, we show the dependence of Ma, on Maq with m = i and 

the same values for the other parameters. In the absence of internal heat sources (Maq = 0) 

in the case of azimuthal perturbations, Ma, = 88.2 at d = 0.i (curve 5) and 177.6 at d = 0.3 
(curve 7). Accordingly, Ma, vanishes at Maq = 344, d = 0.i and at Maq = 770, d = 0.3. 

Thus, azimuthal perturbations (m = i) are the most dangerous for the equilibrium state 
of a cylindrical layer of fluid (i.i). Here, the effect of these disturbances weakens with 
an increase in d (at roughly d > 0.5) and the neutral curves associated with axisymmetric 
and azimuthal perturbations nearly merge. 
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NUMERICAL STUDY OF STEADY-STATE REGIMES OF ROTATIONAL-GRAVITATIONAL 

CONVECTION 

N. V. Petrovskaya, A. K. Fadeev, and V. I. Yudovich UDC 532.5.013.4:536.252 

This article examines the problem of the two-dimensional convection of a viscous incom- 
pressible fluid in a rotating horizontal layer with free isothermal boundaries. Approximate 
solutions are sought by the Galerkin method. We numerically study stability and bifurcative 
steady-state solutions with a change in the Rayleigh number. The Galerkin method was used 
in [1-3] to perform calculations for the same problem (also see [4, 5]). In the present 
investigation, we study transitions in the class of steady-state solutions and calculate 
the corresponding bifurcative values of R. 

Results are presented for a Galerkin system of 62 equations. Equilibria are determined 
by Newton's method with continuation with respect to the parameter R. We find bifurcative 
values of R corresponding either to the generation of a pair of equilibria or a shift in 
the type of stability of the equilibrium. Using the results in [6], we fix the remaining 
parameters (Prandtl and Taylor numbers, wave number) so that the loss of stability of rela- 
tive mechanical equilibrium with an increase in R is monotonic. Here, secondary steady- 
state solutions branch into the subcritical region and are unstable. 

Nonetheless, we observed several branches of stable steady motion. These branches 
appear by different methods with a monotonic increase in R. Of particular interest is the 
following mechanism: the generation of a pair of unstable equilibria "from air" and their 
return to stability as a result of Andronov-Hopf bifurcation. 

i. Let a viscous heat-conducting fluid fill a horizontal layer of thickness H with 
nondeformable free boundaries. The temperatures on the lower and upper boundaries of the 
layer are T z and T2, respectively. In the main regime, the fluid rotates as a rigid body 
with the angular velocity ~ around the vertical axis. The motion of the fluid is described 
by the equations of free convection in the Oberbeck-Boussinesq approximation [7, 4]. We 
will ignore the centrifugal force. 

In a cartesian coordinate system (x, y, z) rotating together with the field, the fields 
of relative velocity v = (vz, v2, v 3) and temperature are assumed to be independent of the 
coordinate y. We introduce the stream function ~: v z = 8~/8z, v 3 = -8~/8x. The equations 
of motion have the following dimensionless form: 

aA~/at  ~ J(~, A~) § A~ + ~ a u / a z - - G a T / a x ,  

au/ot = J(~, ~) + Au - -  a~/~z, ~T/~ t  = J(~,  T) + Pr-~AT -- O~/~x. ( 1 . 1 )  
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